Scale selection for supervised image segmentation
نویسندگان
چکیده
منابع مشابه
Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملSupervised Scale-Invariant Segmentation (and Detection)
The scale-invariant detection of image structure has been a topic of study within computer vision and image analysis since long. To date, Lindeberg’s scale selection method has probably been the most fruitful and successful approach to this problem. It provides a general technique to cope with the detection of structures over scale that can be successfully expressed in terms of Gaussian differe...
متن کاملImage Segmentation Fusion Using General Ensemble Clustering Methods
A new framework for adapting common ensemble clustering 9 methods to solve the image segmentation combination problem is pre10 sented. The framework is applied to the parameter selection problem in 11 image segmentation and compared with supervised parameter learning. 12 We quantitatively evaluate 9 ensemble clustering methods requiring a 13 known number of clusters and 4 with adaptive estimati...
متن کاملA Semi-supervised Learning Approach to Object Recognition with Spatial Integration of Local Features and Segmentation Cues
This chapter presents a principled way of formulating models for automatic local feature selection in object class recognition when there is little supervised data. Moreover, it discusses how one could formulate sensible spatial image context models using a conditional random field for integrating local features and segmentation cues (superpixels). By adopting sparse kernel methods and Bayesian...
متن کاملImage Segmentation: Type–2 Fuzzy Possibilistic C-Mean Clustering Approach
Image segmentation is an essential issue in image description and classification. Currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. Moreover, there are many uncertainties and vagueness in images, which crisp clustering and even Type-1 fuzzy clustering could not handle. Hence, Type-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Image Vision Comput.
دوره 30 شماره
صفحات -
تاریخ انتشار 2012